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Remarks on semiclassical quantization rule for broken susy
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Abstract. We show that the new semiclassical quantization rule introduced for the case where
supersymmetry is broken yields exact energy spectra for the isotropic harmonic oscillator in
three dimensions and the Péschl-Teller oscillator, We also show that the formula gives a good
approximation for the energy spectrum for the quartic potential V (x) = x* — /.

As is well known, the WKB quantization rule yields the exact energy spectrum for the
harmonic oscillator but needs the Langer replacement, £(£+1) — (£+1/2)2, to generate the
exact spectrum for the isotropic harmonic oscillator in three dimensions. The WKB formula
is also known to yield correct spectra for many of the so-called shape-invariant systems
provided appropriate Langer-type modifications are applied [1]. In recent years, it has been
recognized that the CBC formula, another semiclassical quantization formula proposed by
Comtet et al [2] in relation with supersymmetric quantum mechanics, reproduces the exact
spectra for those same shape-invariant systems [3). Surprisingly, it does so without any
Langer-type replacements [4]. Very recently, yet another semiclassical formula has been
proposed for the cases where supersymmetry (SUSY) is broken [5]. In the present paper, we
wish to show that the new quantization formula for broken SUSY can also produce the exact
energy spectra for the isotropic harmonic oscillator and the Poschl-Teller oscillator without
any ad hoc modifications. Furthermore, we calculate the energy values for the potential
Vix) = x* — V2x by the broken SUSY formula and show that the results are as good as
those obtained from the WKB formula.

Let us consider the bound-state problem Hy(g) = Ey¥(g) with the Hamiltonian
H = p*/(2m) + V(q). Let H = H+ ¢ and V(g) = V(q) + ¢ where ¢ is a constant.
Then we may deal with Hy/(q) = E V(q). Suppose the potential V (g) is given in terms of
a scalar function ¢(g) as

Vig) = ¢°(q) — \/h/(2m) ¢'(q) (1)

where ¢'(g) = d¢/dg. The lowest eigenvalue Eg of H is zero when SUSY is good. In order
for the ground-state eigenfunction /o(g) to be normalizable, the function ¢{g) must have
an odd number of zcros_[6]._1f it has an even number of zeros, SUSY is broken.

Since E -V (q) = E — V(q), the WKB quantization rule for the system in question may

be given by
f\/Zm[E - V()ldg = (n+ §)mh. )

0305-4470/93/092261+04507.50 © 1993 IOP Publishing Ltd 2261



2262 A Inomata et al

Here x and xg are the left and right turning points, respectively, which satisfy Vi) =
V(xg) = E, and n € Ny. Taking the explicit form (1) of the potential and expanding in
powers of i (we formally treat ¢(¢) to be independent of %) the integral on the left-hand
side can be put into the form

qr

iR _ B 1/2 -
szf [E — () + —2m-¢'(q):| dg = f./Zm{E — ¢*(g)1dgq
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Here we have introduced new ‘turning points’ g and gg which are defined by the roots of
E = ¢*(g). Inserting this result in (2) and neglecting the higher-order terms in % we arrive
at

qr
- I a(ge) - alqu)
2 —_ —_——
f J2mlE — ¢2(g)1dg = (n 3 - )nh 3
qL

where we have set a(g) = sin™'{¢(q) WE ). This quantization rule, derived earlier by
Eckhardt [7] from Maslov’s asymptotic analysis and by two of us [5] from Feynman’s path
integral, implies either the CBC formula [2]

qr

f \/Zm[E — ¢2(q.)}dq = nrh 4)

qL

or the broken SUSY formula [5]

qr
f \/2m[é ~ $X(g)1dg = (n + 3)7h . (5)

qu

The former is valid for ¢(gL) = —¢(gr) = —\/E, and the latter for ¢(qL) = ¢(gr) = \/E .
If the given potential allows only two turning points, the former is valid when SUSY is good,
and the latter is applicable only when SUSY is broken.

If the given potential is shape-invariant and can be given in terms of the function ¢(q)
of the form

#(q) = Af(g)+B/f(q) (6)

then the eigenvalues of H can be calculated by either the CBC formula (4) or the broken
susy formula (5). If A/B < 0, there are two physically meaningful roots which satisfy
¢(qL) = —¢(gr). Then we may use the CBC formula to calculate the spectrum of H If
we choose A/B > 0, then we have ¢(qr) = ¢(gr) at the turning points. Hence we must
use the broken SUSY formula,
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The radial harmonic oscillator. The effective potential for this system is

1 £(¢ + DK?
V(r) = _mw2r2 + .._..(.+_).}.i...

7 T r>0. N

The usual choice of the function ¢ (r) is

_/m  (+Dh
¢(r)——‘/;wr NP

Wthh satisfies ¢ (r.) = —¢(ra) = m\/— The spectrum resulting from the CBC formula is
= 2nhw. Obviously, Ey = 0. Since ¢ = Vi) -V =+ 2)}‘tw, E = E + ¢ gives
the well known result £ = (2n + € + 2)?’uu Alternatively, if we choose

o(r) = wr + — \/__ (8)

we have ¢(r.) = ¢(rg) = \/7 The cBC formula is no longer applicable. We have to use
(3) to calculate the spectrum which tumns out to be E = (2n+ 2¢ + 1)hw. In this case,
e=V(r)-V@E)=—( - )hw Note that Eq # 0. SUSY is apparently broken. Yet, by

adding £ and &, we are able to arrive at the same exact energy spectrum,

The Poschi-Teller oscillator. The Poschl-Teller potential is often written in the form
V(x) = Vo[x(k — 1) cosec®(@x) + A(% — 1) sec®(ax)] )

where Vo = Wa?/2m), k> 1,A>1,and 0 < ax < n/2. If we wish to make the ground
state of H normalizable, we must choose

¢ (x) = /Vo [A tan(ax) ~ & cot(ax)]

which satisfies ¢(x_) = —¢(xr). The integral of the CBC formula can be exactly comnputed
with this funcnon, which leads us to the spectrum E = Vol(2n + « + A)2 — (k + A)2).
Evidently, £ vanishes for n = 0. Since ¢ = Volk + A)%, the energy spectrum of the
Poschl-Teller oscillator is E = V5(2n + k + A)2. Another option is

¢(x) = v/ Vo[ tan(ax) + (k — 1) cot(ax)] (10)

which meets the condition ¢(x.) = ¢(xr) and requires us to use the broken SUSY formula
(5). The energy spectrum resulting from (5) is £ = Vo[(2n + « + N2 — (k-2 - 12
Since & = Vy(k — A ~ 1)2, we readily reach the desired spectrum. Extension of the present
calculation to the case of the modified Poschi-Teller potential is rather straightforward [8].

A quartic potential. As an example of those which are not shape-invariant, we consider the
following quartic potential:

V(x) = a*x* — /2/m ahx (11)
where a is a positive constant and —oo < x < co. Here we choose

¢ (x) = ax? (12)
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for which ¢(x) = ¢(xg) = \/E Certainly, the CBC formula is not applicable. The
energy spectrum calculated from the broken SUSY formula (5) can be given by a closed-
form expression £ = (W’a/m)*’[3x3 [T (H)]2(n + $)1%3. Even though the spectrum is
given in closed form, it is not an exact result. It is a semiclassical estimation. We compare
numerically these values with those obtained from the WKB formula and those calculated
from the Schrodinger equation. In figure 1, the deviation of the spectra approximated by
the broken sUsY formula (open circles) and by the WKB formula (full circles) from the
Schrodinger result is plotted for i = m = a = 1. Note that the potential (11) obeys the
scaling property x — Ax, a — a/A’, E — E/A?, so the relative errors in figure 1 are
independent of parameters. The broken SUSY formula (5) overestimates the energy values,
while the WkB formula (2) underestimates them. We have also observed similar trends for
other examples.
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